

Comment le soufre et le carbon forment-ils les gisements hydrothermaux des métaux?

Maria Kokh¹, Anastassia Borisova¹, Pascal Gisquet¹, Jean-Louis Hazemann², Eric Lahera², William Delnet², Olivier Proux², Denis Testemale², Volker Haigis^{3,4}, Romain Jonchière^{4,5}, Ari Seitsonen³, Guillaume Ferlat⁴, Rodolphe Vuilleumier³, Marco Saitta⁴, Marie-Christine Boiron⁵, Jean Dubessy⁵, Nikolai Akinfiev⁶, Stéfano Salvi¹, Didier Béziat¹, and Gleb S. Pokrovski¹

⁽¹⁾GET, Toulouse; ⁽²⁾INEEL-ESRF, Grenoble; ⁽³⁾ENS-UPMC, Paris; ⁽⁴⁾IMPMC, Paris; ⁽⁵⁾GeoRessources, Nancy, ⁽⁶⁾IGEM, Moscow

ANR project SOUMET; UPS project CO₂MET; INSU-CESSUR projects ORPY and ASORPY

Sulfur and metals on Earth

How to form an economic metal deposit?

Fluids enabling mobilization, transport and precipitation
Solubility and chemical speciation of metals and volatiles

Fluxes of volatiles through the Earth's crust

Wallace (2005) J. Volcanol. Geotherm. Res. 40, 217–240

Tracking the deep and hot fluids

Low-pressure optical cells for High-pressure Raman, IR, UV, XAS spectroscopy diamond-anvil cells

Hydrothermal reactors

Trace element analyses (ICP-MS, ICP-AES)

Molecular silulations

Diamant

Synchrotron techniques

Thermodynamic models

Sulfur

of final products at ambient conditions

Metrich & Mandeville, 2010, Elements 6, 81

2480 2500 2520 Energy (eV)

Known metal speciation in hydrothermal fluids (H₂O-NaCl-KCl-HCl-H₂S-SO₄) $As(OH)_3^0$ As $Sb(OH)_3^0$ Sb $B(OH)_3^0$ B $H_2MoO_4^0$, $HMoO_4^-$, MoO_4^{2-} , $(Na,K)HMoO_4^0$ Мо $H_2WO_4^0$, HWO_4^- , WO_4^{2-} , (Na,K) HWO_4^0 W FeCl₂⁰, FeCl₄²⁻ Fe $ZnCl_2^0$, $ZnCl_3^-$, $ZnCl_4^{2-}$ Zn Ag AgCl₂⁻ CuCl₂⁻ Cu AuHS⁰, Au(HS)₂⁻ (\pm AuCl₂⁻) Au $Pt(HS)_{2}^{0} (\pm PtCl_{3}^{-}...)$ Pt

Amount and speciation of sulfur is a key control on the transport of most metals

New sulfur species in hydrothermal fluids revealed by in-situ Raman

spectroscopy

A very old sulfur chemical form

Ubiquitous trisulphur radical ion S₃.

The colour of blue ultramarine and the deep blue colour of alkali polysulphides in electron pair donor solvents have been attributed to the disulphur radical ion, S_2^- (ref. 1). That assignment is erroneous and I here establish the correct identity of the species, emphasise the variety of situations in which it is encountered and point out its possible role as an intermediate, in transformations involving elemental sulphur, or sulphide ions.

A blue colour develops when sulphur is heated with water and traces of some basic salt^{2,3}. Blue solutions are also formed by sulphur in alkali halide melts⁴, in liquid potassium thiocyanate above 300° C (refs 5 and 6), by alkali polysulphides in basic solvents⁷⁻¹², by electrochemical reduction of S₈ in dimethyl sulphoxide¹³⁻¹⁵ or LiCl-KCl eutectics^{16,17}, and in the electrochemical oxidation of alkali metal polysulphides in eutectics¹⁸. The blue species is also present (as a minor component) in

Chivers (1974) Nature 252, 32-33

Chivers & Elder (2013) Chem. Soc. Rev. 42, 5996

- Organic and inorganic solvents (e.g., S in NH₃, dimethylformamide)
- Borosilicate glasses and melts (S-B₂O₃-Al₂O₃-SiO₂)
- Alkali halide melts (e.g., S in NaCl-AlCl₃)
- Alkali metal sulfur batteries
- Water sensors

Stability constant of S₃⁻

Pokrovski & Dubessy (2015) Earth Planet. Sci. Lett. 411, 298

Abundance of S₃⁻ ion in geological fluids

Pokrovski & Dubessy (2015) Earth Planet. Sci. Lett. 411, 298

Does S₃⁻ control the transport and precipitation of metals in hydrothermal fluids ?

Example of gold

Enigmas of gold deposits

- Gold is the most chemically inert metal of the Periodic Table.
- ✤ Low capacities of salt (Cl-) and sulfur (H₂S/HS⁻) to solubilize gold (few ppm).
- ***** Existence of large Au deposits (>100s tons) and Au-rich veins (100-1000 ppm Au).
- Deep Au-rich sources from mantle or flow of huge volumes Au-poor fluids.
- ✤ Rareness of known Au economic ressources (Au in deposits/Au in the Earth's crust = 1:10⁷).

Gold solubility in S₃⁻ - bearing solutions

Direct experimental evidence for Au-S₃⁻ complexes; Competition between HS⁻ and S₃⁻ for Au

EXAFS spectroscopy and molecular dynamics simulations

Calculated EXAFS spectra of different Au-HS-S3- clusters (black) versus the experimental EXAFS spectrum of a S_3^- -rich solution at 400°C (red)

The best match of experimental spectra is for HS-Au-S₃ type complexes

Speciation model

 $Au(HS)_{2}^{-} + S_{3}^{-} = Au(HS)S_{3}^{-} + HS^{-}$ (R1), $K_{R1} \approx 1$ at all *T-P*

Τ°C	P, bar	Number of data points	Log ₁₀ K _{R1}	Error ±2 s.d.
300	600	12	-0.3	0.6
350	500	15	0.0	0.5
400	600	12	-0.1	0.6
450	600	14	0.0	0.6
500	700	2	-0.3	0.7

Important role of S₃⁻ in the formation of gold deposits

Porphyry-epithermal fluids

Cooling and rise of a fluid degassed from magma at 700°C and 1.5 kbar in equilibrium with Au metal and carrying: 2 wt% S, H2S:SO2 = 1, 10 wt% NaCl, 7500 ppm Fe, 3000 ppm Cu pH 5-6 (Quartz-Muscovite-K feldspar)

 S_3^- enhances, by a factor of 10 to 100, the fluid capacity to extract Au from magma and to transport it to ore deposition sites

Orogenic fluids

A sea-water salinity fluid during subduction of pyritebearing rocks (geothermal gradient =75°C/1kbar): 3 wt% NaCl, pH 5-6 (Quartz-Muscovite-K feldspar-Albite) Pyrite-Pyrrhotite-Magnetite

S₃⁻ may enhance, by a factor of 100, Au extraction from the rocks and concentration in metamorphic fluids above 500°C

Effect of major fluid parameters on Au solubility and speciation

Breakdown of $S_3^$ within a narrow *T-P*-pH- f_{O_2} window yields focused Au deposition in high tenors from a small fluid volume

Sulfur summary

> Au strongly binds to S_3^- in the fluid phase

> Enhanced extraction, transport et precipitation de Au

> Control on metal signatures in different types of gold deposits

> Making the formation of gold deposits easier than we thought

Sulfur radical species form gold deposits on Earth

Gleb S. Pokrovski^{a, 1}, Maria A. Kokh^a, Damien Guillaume^a, Anastassia Y. Borisova^a, Pascal Gisquet^a, Jean-Louis Hazemann^b, Eric Lahera^c, William Del Net^c, Olivier Proux^c, Denis Testemale^b, Volker Haigis^{d,e}, Romain Jonchière^{d,e}, Ari P. Seitsonen^d, Guillaume Ferlat^e, Rodolphe Vuilleumier^d, Antonino Marco Saitta^e, Marie-Christine Boiron^f, and Jean Dubessy^f

^aGroupe Métallogénie Expérimentale, Géosciences Environnement Toulouse (GET), Observatoire Midi-Pyrénées, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), F-31400 Toulouse, France; ^bCNRS, Université Grenoble Alpes, Institut NEEL, F-38042 Grenoble, France; 'Observatoire des Sciences de l'Univers de Grenoble, Université Grenoble Alpes, F-38400 Saint Martin d'Hères, France; ^dÉcole Normale Supérieure, Paris Sciences et Lettres (PSL) Research University, Département de Chimie, Sorbonne Université, Université Pierre et Marie Curie (UPMC), Université Paris 06, CNRS UMR 8640 Pasteur, F-75005 Paris, France; ^eSorbonne Universités, UPMC, Université Paris 06 & CNRS, UMR 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), F-75005 Paris, France; and [†]Université de Lorraine, CNRS, Centre de Recherches sur la Géologie des Matières Premières Minérales et Energétiques (CREGU), GeoRessources, B.P. 239 F-54506, Vandoeuvre lès Nancy Cedex, France

13484–13489 | PNAS | November 3, 2015 | vol. 112 | no. 44

Evidences directes du transport des métaux par les fluides carboniques

Inclusions à CO₂, 1000 ppm B, 100 ppm As, 1-5 ppm Au

Sigma, Canada

Inclusions à CO_2 , 0.1-3.4 wt% Cu

Fenghuangshan, Chine Lai & Chi (2007) Min. Dep., 42, 293

Garofalo et al. (2014) Geol. Soc. London Spec. Publ. 402, 71

V_{coz}

Pegmatites du Lac des Iles, Canada Hanley & Gladney (2011) Econ. Geol. 106, 33

wavenumber (cm⁻¹)

Inclusions à CO₂, 100s ppm Pd, Cu, Ni

What is the effect of CO₂ on metal transport ?

Solubility of metals in supercritical H₂O-CO₂ fluid

Kokh M. (2016) PhD thesis, University of Toulouse

At Si ↓ Cu, Pt = Sn, Fe ↑ Au, Mo ↓ and ↑

- Metal speciation in the fluid phase
- Thermodynamic model for a multicomponent fluid-mineral system

Solubility of quartz in H_2O-CO_2 -salt-sulfur fluid 450°C, 650 ± 40 bar, 0.01-0.1 mol KCl / kg H_2O

 $Si(OH)_4$, $Si_2O(OH)_6$ – Sverjensky et al., 2014

Fe and Cu solubility in H₂O-CO₂ fluids

450°C, 650 bar, Q-Musc-Kfs, Py-Po-Mt-Chpy, KCl = 0.1 mol/kg water

Gold solubility in S-rich H₂O-CO₂ fluid

Au(HS)S₃⁻: Pokrovski et al., 2015, PNAS, 112(44), 13484

Applications to natural systems

Gold deposits in metamorphic belts

- > 30% of the total Au production
- Low-salinity H₂O-CO₂ fluids (to 50-90 wt% CO₂)
- 0.5-5.0 kbar, 200-600°C
- Pyrite-pyrrhotite, Au (Ag, As, B, Bi, Sb, Te, W), but uneconomic Cu

Orogenic gold deposits

Oxidizing S-poor fluids

450°C, 2 kbar, 7 wt% (NaCI+KCI), QMK, PMP

Orogenic gold deposits

Reducing S-rich fluids

450°C, 2 kbar, 7 wt% (NaCI+KCI), 1 wt% S, QMK, graphite

Les gisements de type porphyre et associés

Plus de 75% de la production de Cu, 50% de Mo, 20% de Au

- ♦ Fluides de salinité variable (2-40 wt% NaCl), $CO_2 \le 20$ wt%, 0,5-1,5 kbar,
- **300-600°C, riches en S, Pyrite-Magnétite-Hématite, CuFeS**₂, Au, MoS₂

Les gisements de type porphyre et associés

Modèle classique: dégazage d'un fluide magmatique riche en soufre et métaux, suivi de refroidissement/démixtion/altération avec les roches

Les fluids de ces gisements contiennent jusqu'à 20 wt% CO2. Quel est son rôle?

Porphyry deposits Saline oxidizing S-rich fluids

Injection de 20 wt% CO₂ dans un fluid porteur de métaux induit la precipitation de >60% de Au et >80% de Cu et Fe

Mixture of the two fluids

A new mechanism of metal precipitation by flushing magmatic CO₂ through a porphyry system?

Assimilation of carbonate rocks by magma

Voir le poster de Maria Kokh

Carbon summary

CO₂ changes the aqueous fluid properties, in particular, the dielectric constant

- Charged complexes become weaker, neutral complexes become stronger; the resulting metal solubility may increase or decrease depending on the fluid composition and metal speciation
- > Control on Fe/Cu/Au ratios in metamorphic gold deposits
- New possible mechanism of metal precipitation in porphyry systems by CO₂ fluxing from magma

Kokh et al. (2016a) Geochim.Cosmochim. Acta (in press, doi:10.1016/j.gca.2016.05.010) Kokh et al. (2016b) Geochim.Cosmochim. Acta (under revision)

Beyond our world...

Near-surface atmosphere: 460 °C 90 bar CO₂ 2 bar N₂ SO₂, H₂O, H₂SO₄ CO, COS, S_n

Venus in true colors by Mariner 10

Carbothermal ore deposits ?