Syenite-hosted gold mineralization in the Abitibi belt, Canada

Robert Linnen

A work in progress

Students and Collaborators: Randy Campbell, Don Davis, Luke Howitt, Shoufa Lin, Graham Layne, Niloufar Naderi, Bozwell Wing, Ryan Martin, Jason Zhang

Outline

> Introduction to the problem

Focus on two deposits: Young-Davidson and Thunder

Creek (Timmins West mine)

Geology, alteration and mineralization

Genetic constraints from pyrite chemistry and S isotopes

- What is the relationship between 'shear-hosted' Au mineralization and intrusions? Is a single metamorphic fluid origin applicable?
- Is the Au genetically related to the intrusion, or are intrusions good structural traps?

Syenite'-hosted one of several deposit types in the Abitibi

Thunder Creek Indicated & Inferred 2.72 MT @ 4.6 g/t (TW 0.954 Moz) Young-Davidson Measured & Indicated 15.68 MT @ 2.97 g/t (Proven & Probable 45.27 MT @ 2.63 g/t; 3.696 Moz) Gold deposits are associated with:

- Regional-scale structures
- Felsic intrusive rocks (including alkalic suites)
- Timmiskaming (rift) sedimentary rocks

These two deposits are remarkably similar in appearance

Young-Davidson

Thunder Creek

Geology of the Young-Davidson Deposit

Syenite as a Preferential Host

Veining system in the syenite – underground mapping

Structural map of the #9 ore crosscut

V₁ veins– Truncated by D₁ Thrusts

Boudinaged ankerite-quartz-pyrite, minor Gn, Cp, Mt, Mo, Au

Tartan Twinned K-feldspar; T > 300°C

V₂ Veins (syn D₂)

- Shallow dipping, folded quartzpyrite veinlets ± carbonate and chlorite rim
- Abundant hematite (Hem), magnetite and rutile (Rt) ± chalcopyrite inclusions in vein pyrite
- Au as inclusions and along fractures in pyrite

V₃ planar or en echelon veins syn to Pre-D₂

Qtz-Carb-Py-Au-Cp-Sch-Gn-Tour)

Much less deformed, Tartan twinned Ksp

V3 veins are truncated by Late D2 ductile shear zones

Formational Model

- Syenite emplacement after D₀
- V₁ veins emplaced during D₁, NNE-SSW compression, regional S₁ foliation in volcanic and sedimentary rocks
- V₂ veins emplaced during early D₂, NNW-SSE compression, penetrative E-W S₂ foliation
- V₃ veins emplaced during late D₂, NNW-SSE compression, further development of E-W foliation

Schematic long section (looking north) through mineralization

Alteration (vein-free syenite)

Potassic (Kspar)-Hematite-Carbonate (ankerite) Associated with Au enrichment of Au, K_2O and Ba during alteration and $\delta^{18}O$ lows

Yellow denotes mineralization

2 Styles of Mineralization

1) Strong association with potassic alteration and high S (pyrite) content (disseminated and V2 veins)

2) Free Au in quartz veins, poor association with wholerock K_2O or S

Oxygen Isotope Thermometry

- 43 mineral separates of quartz, hematite, potassium feldspar, tourmaline, biotite, chlorite, scheelite, calcite and ankerite.
- V₁ veins: 322 ± 25°C to 428 ± 18 °C
 V₂ veins: 408 ± 28°C to 431 ± 30°C
 V₃ veins: 351± 17° C to 379 ± 26°C.

Summary

- There could be an early (pre-deformational) enrichment of Au, but most Au is early D2 deformation
- Multiple stages of Au (V1, V2, V3)
- Association with high temperature ~ 350-400°C alteration
- Overall strong association with pyrite

Timmins West Mine

Thunder Creek Mine – Mineralization Style Similar to YD

Thunder Creek Alteration is Different little potassic or carbonate alteration

Hwy 144 – Mineralization Style Similar to TC & YD

Figure 6.9: Hand sample photographs of Hwy-144 mineralization. A) Coarse grained disseminated pyrite. B) Medium to coarse-grained vein-hosted pyrite.

Hwy Alteration more similar to YD: Feldspathic & carb alteration

Strongest Association of Gold is with Pyrite

Summary: Similar to Young-Davidson

- most Au is early D2 deformation
- Multiple stages of Au (V1, V2, V3)
- Likely association with high temperature alteration (geothermometry lacking)
- Overall strong association with quartz veins and pyrite

Mineralization and Pyrite Chemistry & Textures

Young-Davidson: 2 Types of Pyrite

Pyrite

Type 1 Pyrite: Inclusion-rich

Corroded grain boundaries and abundant oxide inclusions (hem, mt, rt) Found as disseminated pyrite and V₁, V₂ vein pyrite

Dominant gold hosting pyrite

Pyrite

Type 2 Pyrite:

- Euhedral, minor inclusions
- (gangue, ccp, gn, ± rt ± hem)
- Minor proportion of disseminated pyrite, mostly V₃ vein pyrite
- Associated with free gold and V₃ veins

Pyrite Minor Elements by EMPA

Similar for both textural types

Ni: ~100 to 2600 ppm Co: 600 ppm to 15000 ppm As: 700 ppm to 4300 ppm

Type 2 pyrite is typically late Thus the similarity of compositions suggests repetitive fluids

Sulphur Isotopes

Backscatter Image of Pyrite

Note:

- Au nearly absent
- Strong zoning
- Corrosion and secondary porosity

EMP-WDS Ni Map

Ni contents range from 30 to 2760 ppm

Co zoning overlaps with Ni 10 to 1375 ppm

Low As contents <40 to 640 ppm

In Situ Analysis of Pyrite: Sulphur Isotopes: SIMS -4.4 to 4.1% variation

In Situ Analysis of Pyrite: Trace elements: LA-ICP-MS (spot analyses) Au ranges from <1 to 22.6 ppm

Overall Au Correlates with

- δ^{34} S values of near zero
- low Ni-Co contents
- no correlation with As

Au-As Contents in YD Pyrite

Conclusions About Young-Davidson

- Au associated with repetitive stages of pyrite growth and corrosion
- Near-saturation Au contents of pyrite are indicative of a fertile Au hydrothermal system
- Fluid mixing likely very important, and possibly controlled Au deposition

2 Pyrite Types at both TC & Hwy144

Corroded

Sulphur Isotopes (SIMS) Thunder Creek & Hwy 144

Location	Generation	δ ³⁴ S Range	Avg. δ^{34} S	n
Thunder Creek	Disseminated	-3.0 to -6.1	-4.7	8
Thunder Creek	Vein-Hosted	-3 to -5.3	-4.3	14
Hwy-144	Disseminated	-1.8 to -3	-2.4	2
Hwy-144	Vein-Hosted	-0.1 to -3.3	-1.5	8
Hwy-144	Fracture Filling	-1.4 to -6.9	-3.7	9

Thunder Creek Pyrite

- Poorly zoned and low concentrations of Ni-Co
- Abundant micronanonuggets of Au
- 'Background' Au

Thunder Creek Pyrite

Thunder Creek Pyrite

Au saturation line from Reich et al. (2005)

Hwy 144 Pyrite

Hwy 144 Pyrite

Conclusions About Thunder Creek and Hwy 144

- Thunder Creek and Hwy 144 appear to be different systems
- > Pyrite chemistry can be applied to recognizing systems
- Au contents of pyrite can possibly be used to assess the fertility of Au hydrothermal systems

Syenite-hosted gold mineralization in the Abitibi Sub-Province of Ontario: Orogenic or Orthomagmatic?

Mineralization is syn-deformational **BUT**

- Fluids are too hot to be metamorphic (regional greenschist facies)
- Oscillatory zoning suggests supersaturation via fluid mixing
- Fluid mixing may also be supported by S isotopes (but redox changes can't be discounted
- Au contents of pyrite have potential to indicate the fertility of systems

More Petrography-Pyrite Mapping

At Least 2 Stages of Au Au inclusions in pyrite, or free Au – possibly early

Au with galena in pyrite in mineralized syenite

Mineralized Syenite

Co-Ni zoningGa-Au inclusions

Au-Pb seems to be synchronous with primary pyrite zoning

Disseminated Pyrite in Mineralized Syenite Porphyry

Mafic volcanic-strong ankerite alteration (1.65 ppm Au)

Late Sulfate Association

Late fracture assemblage Au-celestine-barite-ankerite-Kfeldspar-albite. Disseminated Py in syenite

CaREE fluorcarbonate (pt 1-Synchisite/Parisite?) associated with Fe oxide (pt 2) and zircon (pt 3). Weakly mineralized syenite (0.7 ppm Au)

Au association with oxidation

Late Au is Associated with oxidized, F-rich, REE-rich fluids

Is this a magmatic signature?

Acknowledgements

(Northgate, Aurico)

(Lake Shore Gold)