

The Natural and Artificial Colour Origin of Gems: The Geological Context and the Artificial Modification of Chromophores and other Colour-Causing Defects

Dr. Thomas Hainschwang

thomas.hainschwang@ggtl-lab.org

GGTL Laboratories, Balzers, Liechtenstein

École Thématique du CNRS – INSU, Toulouse, June 9th, 2016

© GGTL Laboratories 2016

Idiochromatic gems

Colored from elements that are part of their essential chemical formula, e.g. malachite $Cu_2(CO_3)(OH)_2$ coloured green from Cu^{2+} or rhodochrosite MnCO₃ coloured pink by Mn²⁺ and Mn³⁺. Colour rarely modifiable by treatment.

Allochromatic gems

Colourless in their «pure» state, coloured by impurities and/or defects, e.g. ruby Al₂O₃ coloured by Cr³⁺or blue diamond coloured by boron. The vast majority of gemstones are allochromatic. Colour frequently modifiable by treatment.

The Colour of Gemstones

GGTL Laboratories GEMTECHLAB GEM

The Colour Treatments of Gemstones

<u>Dyeing:</u> All gemstones

<u>Coating:</u>

All gemstones

Heat treatment:

Corundum, diamond, aquamarine, tanzanite, spinel, tourmaline

<u>Heat treatment with additives (Diffusion treatment):</u> Corundum (Be, Ti, Cr), feldspar (Cu)

Irradiation (x-rays, gamma rays, electrons, neutrons etc.): Diamond, topaz, pink tourmaline, beryl (\rightarrow Morganite, emerald), quartz

<u>HPHT (High Pressure High Temperature) treatment:</u> Diamond

CORUNDUM

© GGTL Laboratories 2016

The Colour Causes of Corundum

Fe³⁺: Yellow Fe²⁺ \rightarrow Ti⁴⁺ charge transfer: blue Fe²⁺ \rightarrow Ti⁴⁺ charge transfer + Fe³⁺: Green Cr³⁺: pink to red Cr³⁺ + Fe: Orange V³⁺: Green - red colour change Cr³⁺ + Fe²⁺ \rightarrow Ti⁴⁺ charge transfer: Purple, colour change Mg²⁺-trapped-hole colour centre: Yellow

© GGTL Laboratories 2016

Wavelength, nm

MA

UV-Vis-NIR Spectroscopy – Colour Change Sapphire

© GGTL Laboratories 2016

Colour Treatments of Corundum

Heat treatment:

Simple heat treatment at temperatures between 1100 and 1600°C, oxidising or reducing atmosphere: <u>Modifies the valency of Fe and/or</u> <u>melts rutile to supply Ti⁴⁺</u>

Change «geuda» saphires to blue by melting of rutile: Ti⁴⁺ Deepen blue color (reducing atmosphere): Fe³⁺ \rightarrow Fe²⁺ Lighten blue color (oxidising): Fe²⁺ \rightarrow Fe³⁺ Destroy blue colour in rubies with blue zones (oxidising): Fe²⁺ \rightarrow Fe³⁺ Enhance the red colour of ruby (oxidising)

Heat treatment with additives (Diffusion treatment):

Ti or Cr diffusion \rightarrow superficial blue / red colour, high temperature Be diffusion \rightarrow Traped hole colour centre from Be²⁺ \rightarrow Yellow colour In blue sapphire: colourless outer layer.

The Colour Centres of Beryl

Beryl:

 $Fe^{2+} \rightarrow Fe^{3+}$ charge transfer: blue (aquamarine)

 $O^{2-} \rightarrow Fe^{3+}$ charge transfer: yellow

 $Fe^{2+} \rightarrow Fe^{3+}$ charge transfer and $O^{2-} \rightarrow Fe^{3+}$ charge transfer: green to green blue («green beryl»)

Cr³⁺: green to bluish green

V³⁺: Green to yellowish green

Mn²⁺: pink to red

NO₃ colour centre: blue to violet, unstable («Maxixe beryl»)

GGTL Laboratories GEMTECHLAB

UV-Vis-NIR Spectroscopy -- Emerald

© GGTL Laboratories 2016

Colour Treatments of Beryl

Heat treatment:

Simple heat treatment at temperatures around 450°C: <u>Modifies the</u> <u>valency of Fe.</u>

Green blue color is transformed to blue: $Fe^{3+} \rightarrow Fe^{2+}$ (Oxidising)

Emerald is heat sensitive, hence never heat treated.

Irradiation (mainly by Gamma or electron irradiation, sometimes neutrons):

Colorless beryl \rightarrow Yellow (Heliodor)

Beryl with NO₃ precurser \rightarrow «sapphire» blue (unstable colour) Pale pink morganite \rightarrow deep orangey pink Strongly bluish emerald \rightarrow more pure green (yellow colour)

DIAMOND

© GGTL Laboratories 2016

GGTL Laboratories GEMTECHLAB

What are Defects? Example N and B in Diamond: The Type System

GEMLAB

Source: Breeding and Shigley, 2009

Example of Colour-Causing Defect in Diamond: The H3 Centre

Apparent color by absorption + luminescence

Adapted from Bursill and Glaisher, 1985

Absorption by H3 defect: yellow color

www.ggtl-lab.org

GGTL Laboratories GEMLAB

Emission by H3 Defect: Green Luminescence

www.ggtl-lab.org

ID of Authenticity + Colour Origin of Diamond

Thanks to the many defects and its large band gap diamond shows an incredible variety in absorptions and emissions that we can measure by spectroscopy and observe by imaging (luminescence only).

- → UV-Vis-NIR spectroscopy
- \rightarrow IR spectroscopy
- → Photoluminescence spectroscopy
- → Fluorescence imaging

The Equipment

GGTL Laboratories GEMTECHLAB

Absorption: Infrared and UV-Vis-NIR Spectroscopy

GEMLAB

Fluorescence microscopy with PL and Raman

Photoluminescence spectroscopy

GGTL Laboratories GEMTECHLAB

GEMLAB

The Colours and Colour Causes of Untreated Natural Diamonds

«Cape» Yellow Diamonds

«Canary» Yellow Diamonds

Type IIb Blue Diamonds

Orange to Pink Orange «480 nm» Diamonds

Violet Diamonds

«Olive» Diamonds

GGTL Laboratories GEMLAB

Purplish pink to red Diamonds

«Green Emitter» Diamonds

GGTL Laboratories GEMTECHLAB

GEML

.AB

The Colours and Colour Causes of Treated Natural Diamonds

Treatments to Modify the Colour of Diamond

1) Annealing under inert atmosphere

GGTL Laboratories GEMTECHLAB

- 2) Irradiation by high energy particles (electrons, neutrons, protons etc.)
- 3) Irradiation followed by annealing (600 to 1000°C)
- 4) HPHT (High Pressure High Temperature) treatment (1900 to 3000°C)
- 5) HPHT followed by irradiation/annealing
- 6) Irradiation followed by HPHT treatment
- 7) Coating (Not covered in this presentation)

www.gatl-lab.ord

Treatment Methods: Electron Irradiation, HPHT Treatment and Annealing

A high T° oven used by GGTL for annealing treatments up to 1310°C

Two electron accelerators that have been used for the irradiation treatment of diamonds by GGTL

A Torroid type HPHT press used for HPHT treatment of diamonds by GGTL

Treated Green Diamond: Irradiation

Treated Blue + Yellow Diamond: Irradiation (+ HT)

300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 Wavelengt, nm

© GGTL Laboratories 2016

Treated Orange Diamond: Irradiation + HT

GEMLAB

Treated Purple Ib Diamond: Irradiation + HT

Treated «Green Emitter» Diamond: HPHT

1101

HPHT Treated Type IIb Natural Diamonds

Treated Pink Ia Diamond: HPHT + Irradiation + HT

1000

1100

SUMMARY + CONCLUSIONS

- Gem materials are coloured by various mechanisms and generally through many different chromophores and/or defects.
- For many gemstones, the colour can be modified via treatment, with the goal to make them more attractive and hence valuable.
- These treatments are often processes that can also occur in nature and can hence be very difficult or even impossible to identify.
- The colour causes can often be defined based on UV-Vis-NIR spectroscopy.
- Diamond is the only material in which an astonishing quantity of absorptions and emission can be directly measured by spectroscopy, that help to identify the authenticity and origin of colour.
- In most other gems the treatments are not identifed through UV-Vis-NIR absorption spectroscopy but other methods must be used.

GGTL Laboratories <u>GEMTECHLAB</u>

GEMLAB (LIECHTENSTEIN)

© GGTL Laboratories, 2016