Using electron backscatter diffraction
(EBSD) to understand microstructure in

mineral deposits
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Structure of talk

e What is EBSD?

* Implications: Interpretation of some common textures
* Implications: Sphalerite colloform growth

* Implications: Quantifying pyrite deformation microstructure in
experimentally and naturally deformed ores.

* Implications: Application to SAFOD

* Implications: The future - combine EBSD and microchemistry -
invisible/visible gold
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Fig. 3.11.

a Lattice with two types of point
defects. b Edge dislocation de-
fined by the edge of a half-plane
in a distorted crystal lattice.

¢ Screw dislocation defined by a
twisted lattice. d Dislocation
with edge and screw dislocation
regions in a crystal. A square
itinerary of closed arrows around
the dislocation is used to find
the Burgers vector of the dislo-
cation, indicated by open arrows

From Passchier &
Trouw (2005)
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Secondary metamorphic recrystallisation
textures in pyrite

Aim to show how EBSD can change interpretation of:
Foam/annealing Textures
Replacement Textures



Foam Textures in pyrite

Evidence of “textural equilibrium” through high
temperature annealing.

Previous textures and accumulated dislocationsare lost.

Primarily identified through appearance of triple junctions

in reflected light and BSE images.

Numerous studies suggested that foam textures
predominate above 500 °C and brlttletextu res below

Kuscu and
Erler, 2002
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Foam textures in 550 °C amphibolite facies massive ore, Sulitjelma, Norway
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Replacement textures — Pyr-Mt

* Pyrite commonly replaced by magnetite at low T in hydrous oxidising
environments— especially during diagenesis and also in spoil heaps.

* Harlov et al (1997, JMG) also report very high temperature alteration of pyrite

to magnetite Remnant Magnetite

Remnant Pyrite Magnetite Pyrite
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From: Sulphide-magnetiticores from Sibay VHMS deposit (South Urals, Russia) - Zakis et al. web page.



Image of amphibolite facies magnetite with pyrite inclusions from
Sulitjelma, Norway.
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Prior et al. 1999, American Mineralogist.



Reconstructed pyrite boundaries and crystal misorientation angles

This is a random distribution
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* Note that, despite cubic symmetry, the minimum ;
misorientation angle for pyrite can be up to 90 degrees 0 10 20 30 40 50 60 70 80 90
because <100> directions in pyrite are diad axes.
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Prior et al. 1999, American Mineralogist.
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Possible mechanisms of formation

* Magnetite overgrows an early fine grained pyrite texture. Pyrite grain growth continues
outside magnetite (c.f. quartz in garnet mica schists)?

» Difficult to reconcile with pervasive plastic deformation of pyrite and lack of
deformation of magnetite.
* Magnetite replaces pyrite porphyroblastand re-orients relict parts of original pyrite
porphyroblast?
* Difficultto conceive of a mechanism by which this may happen.
* Pyrite porphyroblasts locally ‘shattered’ into chaotic finer grained aggregate prior to
magnetite replacement?
* Oxidising fluid hydraulically fractures and shocks pyrite [amph facies].
* ‘Shocked’ pyrite is more easily oxidised (Martello et al. 1994, GCA; Sasaki 1994, GCA).
* Magnetite replaces along new grain boundaries.

* ‘Shock’ consistentwith evidence for high-T crack-seal structures in pyrite described by
Boyle et al. (1998) Mineralium Deposita, 34, 71-81.



Evidence for high T fracturing/sealing of pyrite
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Fig. 9. Sulphur isotope transects of
sphalerite, mapped perpendicular to the
layering direction within each of the
samples; the location of each traverse and
layered stages are highlighted.

Fig. 11. Incident light, BSE images and trace element distribution maps
for Cl (red), Cd (blue) and Fe (green) in all of the samples mapped;
layering changes within each sample are highlighted, as are the stages
that the layers belong to. Changes in colour brightness reflect differences
in abundance. The red (Cl)—green (Fe)-blue (Cd) (RGB) composite map
indicates where sequestration of more than one trace element has
occurred within layers (e.g. purple indicates sequestration of both Cl and
Cd, etc.). (a) GY-001; (b) GY-002; (¢) GY-003. Minimum and maximum
quantified results are given for each trace element for sample GY-002 in
Table 1.
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Sequence of sphalerite depositional layers record changing environmental
conditions through time.

R 50: 10 T 55:15 [ 20:30
STAGE 1 Bacteriogenic S | STAGE 2i Bacteriogenic S STAGE 2ii Hydrothermal S

I /5 55 [ 5545 I 090

STAGE 3 BacteriogenicS | STAGE 4 BacteriogenicS | STAGE 5 Hydrothermal S

Fig. 5. Diagram illustrating the layering sequence within the colloform _45:55
samples. Formation stages are highlighted in a proposed oldest to
youngest sequence (stages 1-7).

Fig. 13. Proposed growth sequence of the
Galmoy colloforms defined by petrographic
and sulphur isotope results. The mean

STAGE 6 Bacteriogenic S STAGE 7 Bacteriogenic S proportion of bacteriogenic to hydrothermal
sulphur is highlighted for each stage.
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EBSD and quantifying deformation
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An analysis of the microstructures developed in experimentally
deformed polycrystalline pyrite and minor sulphide phases
using electron backscatter diffraction
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Previous Work

* Samples are from the Blow ore body of the Mt Lyell Mining and Railway
Company, Tasmania and were deformed in a gas apparatus rig by triaxial
shortening.

* Results suggested that plastic deformation via dislocation glide mechanisms
with significant amounts of recovery and recrystallisation (Cox et al., 1981)

* These results were utilised by McClay and Ellis (1983, 1984) to determine the
strain rate contours for dislocation glide and creep in a pyrite deformation

mechanism map

* Neutron Diffraction by Siemes et al. (1993) analysis suggested a weak <111>
CPO at low temperatures changing to a <100> orientation at 700°C



Cox et al. (1981) experiments

Samples:
1 sample of the original starting material

4 samples deformed at varying temperature were analysed using EBSD to determine the
deformation mechanism and microstructural development

Run 059: 650°C
Run 053: 700°C

1. B-1: Starting Material

2. Run 048: 550°C €=12x 104 1
3. Run 092: 600°C 200 | P= 300Mpa
4.

5.
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material



Crystal Preferred Orientations?

Siemes et al. (1993) utilised Neutron diffraction to
suggest that all of the samples up to 650°C had an
initial weak <111> CPO which altered to a <100> CPO
at 700°C (Siemes et al., 1993).

@ Maximum M.U.D. B Minimum M.U.D.

However, all of the samples analysed in this study using
EBSD to generate (1 point per grain) pole figures reveal
a ‘random’ orientation of the crystals.

pfl index of 1.0 = random distribution (Michibayashi
and Mainprice, 2004)

There is no bulk CPO.
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Implications

Between 550°C and 700°C at a strain rate of 2 x 10*s! and confining pressure of 300Mpa
polycrystalline pyrite has deformed via dislocation creep mechanisms

Evidence for this deformation at high temperatures, however, has been partly removed by
recrystallisation/recovery processes...

Recrystallisation processes change
systematically with increasing temperature
from Blg to SGR and finally GBM

These results did not fit with the existing
deformation mechanism map for pyrite
(McClay & Ellis, 1984)...
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Deformation of pyrite in nature



Mineralogical Magazine, December 2009, Vol. 73(6), pp. 895-913

How low can you go? —
Extending downwards the limits of plastic deformation in pyrite

C. D. BARRIE", A. P. BOYLE> AND M. SALTER’

' School of Geography and Geosciences, University of St. Andrews, St. Andrews KY16 9AL, UK
* Department of Earth and Ocean Sciences, University of Liverpool, Liverpool L69 3GP, UK

[Received 21 August 2009; Accepted 8 November 2009]



Greens
Creek,
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~325 °C

Greens Creek Deposit: ~325°C, ~2-4 8kbar
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FiG. 6. Greens Creek Ore Deposit (~325°C; ~2—4.8 kbar). (a) Orientation-contrast image with pole figures (i, i1) for

selected pyrite grains; rotation direction is given by arrows and the rotation axis by a and/or b. (5) EBSD map

showing the band-contrast image overlain by grain (~10-25°) and sub-grain (~2—10°) boundaries. (¢) Texture-

component (TC) EBSD map indicating lattice-misorientation changes in degrees, relative to a selected point (white

cross), in the pyrite grain highlighted. (d) Cumulative-misorientation profiles for the EBSD transects (1 and 2)
indicated in (c¢).



Lokken,
Norway

~320 °C

Lokken Deposit: ~320°C, ~3kbar
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FiG. 5. Lekken Ore Deposit (~320°C; ~3 kbar) (a) Orientation-contrast image with pole figures (i, ii) for selected
pyrite grains; rotation direction is given by arrows and the rotation axis by a and/or b. (b) EBSD map showing the
band-contrast image overlain by grain (~10—-25°) and sub-grain (~2—10°) boundaries. (¢) Texture-component (TC)
EBSD map indicating lattice-misorientation changes in degrees, relative to a selected point (white cross), in the
pyrite grain highlighted. (d) Cumulative-misorientation profiles for the EBSD transects (1 and 2) indicated in (c¢).



Parys Mountain,
Angelsey

~200-260 °C
Dislocation creep

in pyrite extends
well below 500 °C

Parys Mountain Deposit: ~200-260°C
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Tectonophysics 483 (2010) 269-286
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Pyrite deformation textures in the massive sulfide ore deposits
of the Norwegian Caledonides

Craig D. Barrie **, Alan P. Boyle ?, Nigel ]. Cook ", David . Prior ?

4 Department of Earth and Ocean Sciences, University of Liverpool, Liverpool, L69 3GP, United Kingdom
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Ore Geology Reviews 39 (2011) 265-276

journal homepage: www.elsevier.com/locate/oregeorev
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Reconstructing the pyrite deformation mechanism map

Craig D. Barrie **, Mark A. Pearce ®, Alan P. Boyle ¢

Grain size: ~100um
/
1000 A Cataclastic flow ‘\o(\ P L 3
Brittle-ductile ™ g 2 0 _
= —~ 6 — |82
S ~ I -8 Dislocation gllde ‘g‘_al
= ~< -10 —E3
;)/ - AN g S
) ) | o)
@ 100 -/ 12 ]\ Dislocation creep ‘é‘ -.Eg | o
® A4 |- No gE
sgleustz:e 14 Transitional — _ oo
coble
creep Nabarro
herring
creep
10 1 T T T 1 i ! - 1
0 200 400 600 743 go0

Temperature (°C)

Differential Stress (Logo MPa)

Stress MPa

Fig. 1. The deformation mechanism map for polycrystalline pyrite with a grain size of

~100 um published by McClay and Ellis (1983). Strain rate contours are in 10~ "s
were defined using the results from Cox et al. (1981).
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Fig. 10. The revised deformation mechanism map for polycrystalline pyrite with a mean
grain size of ~35 um, constructed using EBSD data from this and previous studies (Barrie
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were calculated using the oniginal experimental stress-strain curves, some of which were
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How can this be used?



San Andreas Fault Observatory at Depth (SAFOD)

Drilling experiment that cored
through the San Andreas Fault at a
depth of ~2.7km.

Temperature in the observatory is
~120 °C

Gouge and clay minerals are
consistent with 120 °C

Pyrite would be expected to have
deformed by brittle mechanisms

Zoback et al (2011)

S San Andreas NE
i Fault Golq iII Fault

P

Granodiorife

2,000}

30000 i

Figure 3. Simplified geologic cross-section parallel to the trajectory of the San Andreas Fault
Observatory at Depth (SAFOD) borehole. The geologic units are constrained by surface
mapping and the rock units encountered along both the main borehole and the pilot hole. The
black circles represent repeating microearthquakes. The three notable fault traces associated
with the San Andreas Fault damage zone (SDZ, CDZ, and NBF) are shown in red. The depth
at which the SAFOD observatory is deployed is shown.




SR g

Figure 1. Optical photomicrographs of features in SAFOD specimen thin section G24a. A — RL image of late pyrite filling

space between fractured shale fragments. B — RL image of brittle fracturing of polycrystalline pyrite mass. C & D — PPL
images of typical gouge with broken shale and siltstone fragments. E — RL image of pyrite framboids in shale fragment.
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tion of a shear surface separaing pyrite largely unff ected by later brittle deformaion (e .g. Figure 4)
from pyrite affected by later brittle deformtion (e .g. Figure 6)

B - The three sets of pole figures (i, ii & iii) record evidence for plastc strains (dispersion of data) within
individual pyrite grains (outlined in RL images) consistent with dislocation creep.

C - The misorientation angle distribution histogram summarises the development of greater than expec -
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Mortar texture indicative of pyrite deformation by
subgrain recrystallization (SGR)

* Previous studies of naturally deformed pyrite suggest >400 °C for SGR
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Where does the high temperature come from?

* Inherited from
protolith?

e VVertical movements of
rocks within the SAF?

* Localised heating from
earthquakes?

 Work in progress...
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Figure 2. Revised deformation mechanism map from Barrie et al. (2011) for polycrystalline pyrite. The con-
tours on the map are strain rate in units of 10™ s™ and were calculated using experimental stress—strain
curves, some of which were presented in Cox et al. (1981). Stress estimates (pale blue band) are from Lock-
ner et al. (2011), strain rate (yellow band) and temperature (red band) estimates are from SAFOD.




Future Directions?

Combine EBSD and Chemistry
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in Witwatersrand pyrite

Steven M. Reddy - Robert M. Hough



 “The data presented
' hereindicate the

% possibility of gold

X% mobilizationand

% redistribution priorto
% Central Rand Group
deposition by

¥ enhanced diffusion of
" these elements from
. ¥} the matrix into the

. pyrite along specific
1! low-angle boundaries
k4 that behaved as fast-

diffusion pathways N e i
" during an early, high-
temperature (>500
°C) deformation
event. Distance ur)

h

Concentration (ppm)
Misorientation Angle (°)




doi: 10.1111/ter.12206

The golden ark: arsenopyrite crystal plasticity and the retention
of gold through high strain and metamorphism
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Gold-poor core

s NS - Invisible to visible gold?
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Fig. 3 Sample 215-20, grain 2 — the arsenopyrite boundaries, cores and rims are highlighted in red. (A and B) Backscattered elec- preCI pltatlon Of pyrlte Au

tron (BSE) images. (C and D) Coloured EBSD maps showing crystallographic misorientations in the range 0-10° for (C) and 0
90° for (D). Grain 2 coincides with a crenulation microfold and is weakly deformed by this later overprinting low strain event

(D3op), especially in zone D. High-angle boundaries (=10°) are plotted in black and low-angle boundaries (>2°) in red. Dynamic . . . . " .
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depleted in comparison to A-rims, and are well developed around zone F. (G) Pole figures show the dispersion of orientation data.
(H) Cumulative orientation profiles (plotted relative to first point) parallel to the long axis (a-a’) and short axis (b-b’) of grain 2.
The largest crystallographic misorientations are recorded along the crystal long axis (a—a’), parallel to the D3 shortening direction.



Summary

* Full understanding of microstructure is essential for
understanding mineral growth processes, mineral
deformation processes, mineraFrecrystaIiisation
processes, element mobility processes and so on...

* Microstructure should not be investigated without
recourse to EBSD

* Studies combining EBSD and microchemistry will
become increasingly important

* Time for a short epilogue?
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» Aggregate comprises deformed and undeformed pyrite
grains...

* Misorientation profiles across
* A— whole aggregate

* B— Large left side pyrite showing up to 4° internal lattice
distortion

* C—Internal grain showing little or no internal lattice
distortion i — _
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Pole figures for all 70 pyrite grains in the aggregate

suggest some weak alignment of grains parallel to
<111>.

Fole Figures
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* LH pyrite comprises subgrains with low angle boundaries (white,
yellow & cyan) around a polycrystalline core.

* RH aggregate comprises pyrite grains with low angle boundaries
and continuouslattice distortion up to ~8°
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