

Ecole Thématique du CNRS-INSU "Ressources Minérales : Du Terrain à l'Expérimentation"

Hydrogène, redox et processus métallogéniques

Elena F. Bazarkina

GeoRessources, Nancy IGEM RAS, Moscou

Rôle des processus Redox sur la mobilité des métaux dans la lithosphère

Métaux précieux

Uranium

Sulfures des métaux de base

Réduction = mécanisme majeur de précipitation des métaux (= formation des gisements) Pour quantifier le transport et la précipitation des métaux dans la croûte terrestre il nous faut connaitre **l'état redox des fluides** et **les agents réducteurs**

Redox tamponné par les roches: fO_2 ou fH_2 ?

Hydrogène dans les fluides naturels

H₂ : génération versus réactivité

Hydrogène H₂ à l'équilibre liquide-vapeur en conditions hydrothermales

Immiscibilité: phénomène fréquent

L'équilibre liquide-vapeur dans la système H₂-H₂O

Approche expérimentale

Heating stage for capillary T ≤ 500 °C Developed in collaboration with Linkam

Capillaire de silice ([®] Polymico-Technologies) Cellule hydrothermale optique

Pour comparison le diamètre d'un cheuveu est d'~ 80 μm

Equilibre des phases en conditions T-P controllées

Approche expérimentale

Système de pressurisation d'H₂ dans le capillaire

Spectroscopie Raman

La spectroscopie Raman permet d'étudier les interactions atomiques (dans les molécules pluri-atomiques, e.g. H₂)

 H_2

4000 4050 4100 4150 4200

Quantification par spectroscopie RAMAN

application: inclusions fluides

Intensité ~ Concentration* *section efficace

Section efficace de diffusion Raman: calcul de composition de gaz

NuL	NuN2	NuL-NuN2	GAZ	Nuj	Zj/N2	NuL-Nuk	correction	Z*j/N2	
19435	2331	17104	SO2	1150	5,51	18285	1,069	5,15	
19435	2331	17104	CO2	1285	0,99	18150	1,061	0,93	Contant à
19435	2331	17104	CO2	1288	1,5	18147	1,061	1,41	25-1000°C
19435	2331	17104	CO2	2143	0,99	17292	1,011	0,98	V
19435	2331	17104	H2S	2610	6,81	16825	0,984	6,92	•
19435	2331	17104	CH4	2917	8,7	16518	0,966	9,01	Vstratching
19435	2331	17104	H2O	3657	2,51	15778	0,922 <	2,72	
19435	2331	17104	H2	4155	2,2	15280	0,893	2,46	_ Q ₁ (1)

 $Z^{*j,N_2} = \frac{Z^{j,N_2}}{\left(\overline{\nu_L} - \overline{\nu_j}\right)} / \left(\overline{\nu_L} - \overline{\nu_{N_2}}\right)$

H.W. Schrötter, & H.W. Klöckner (1979): Raman scattering cross sections in gases and liquids. Pp 123-166 in: *Raman Spectroscopy of Gases and Liquids* (A. Weber editor). Topics in Current Physics. Springer-Verlag.

J. Dubessy, M.-C. Caumon, F. Rull (2012). Raman Spectroscopy applied to Earth Sciences and cultural Heritage. European Mineralogical Union, EMU Notes 12.

Composition de la vapeur: quantification de H₂

Quantification de H_2 *dans les inclusions fluides: à réviser!*

Vapeurs riches en H₂

Fumeur noir de Rainbow :

(Charlou et al., 2002, Chem.Geol.191, 345)

 H_2 jusqu'à 16 mmol/kg ~45% d'H₂ dans en phase gaz

T = 365°C Profondeur = 2300m (~230 bar) Immiscibilité

L'immiscibilité à grande profondeur peut générer des vapeurs à plus de 10 mol% d'H₂!

Quelles sont les propriétés de ces molécules? Quel est le rôle de ces molécules dans les processus redox dans la croûte terrestre?

Formation des gisements d'U sous discordance: Réduction de l'uranyl (U^{6+} , UO_2^{2+}) en uraninite (U^{4+} , UO_2)

Dargent M., Truche L., Bazarkina E.F., Dubessy J.

Transport/dépôt de l'U en condition hydrothermale

Comment expliquer le caractère massif et extrêmement localisé des gisements d'U sous discordance? Comment mieux orienter les recherches de prospection?

Cinétique de réduction de l'uranyl en uraninite Approche expérimentale

Gas injection / sampling

Autoclaves chargés en conditions anoxiques (glove box $[O_2] < 5$ ppm)

[U] en solution analysé par ICP-OES: prélèvements au cours du temps

Vapor phase CH₄, H₂

Mesure des vitesses de réduction

Liquid phase (10⁻³ M UO₂Cl₂, 0,1M HCl + LiCl + FeCl₂) Teflon bowl in Ti autoclave

Précipitation de l'uraninite (UO₂)

Précipitation de l'uraninite (UO₂)

TEM – diffraction X

Réduction de l'uranyl en UO₂: effet de la température

(Dargent et al., 2015 GCA 167, 11)

Spéciation de l'uranyl en solution vs cinétique de la réduction

Réduction de uranyl en UO₂ par CH₄

Réduction de uranyl en UO₂ par C-graphite

Réduction de uranyl en UO₂ par Fe(II)

Réduction de uraninite: L'exemple de McArthur River (Athabaska, Canada)

Modèle<u>simplifié</u> (agents réducteurs en excès):

192 kt U

1.4 bar H₂: 10 ans (!) 2.4 bar CH₄: 650 ans C-graphite: 130 000 ans

McArthur: 0.1-1 Myr

Rôle des agents réducteurs mobiles: précipitation de l'U de façon massive et hyper localisée -> applicable à d'autres métaux

Relation entre spéciation de l'U et vitesse de réduction

Nouveau guide de prospection \rightarrow gaz réduits

MERCI POUR VOTRE ATTENTION

Des questions?

Hydrogène, redox et processus métallogéniques

Elena F. Bazarkina